

ASPV: Advanced Solar PV Design and Installation 2024

Prerequisite

Completion of FSPV: Fundamentals of Solar PV Design and Installation, in-person or online course offered by the NC Clean Energy Technology Center; a comparable PV fundamentals course; or working knowledge of solar PV (i.e. already working in the industry) is required to register for this advanced course.

Course Description

This 40-hour advanced photovoltaics course covers advanced topics on design and installation of residential and commercial PV systems and delves into the details of electrical standards and codes. The bulk of this weeklong workshop covers topics relating to the National Electrical Code® (NEC) requirements for PV systems and prepares the participant for proper code compliance, wire sizing, equipment specifications, permit processing, commissioning, and other necessary steps in the design and installation phases of residential and commercial systems. Activities in this workshop include designing a multiple inverter commercial PV systems.

WHO SHOULD ATTEND THIS COURSE

- Residential and Industrial Solar System Installers and Designers
- Electricians
- Professional Engineers
- Energy Professionals
- Code Officials
- Emergency Service Providers
- Facility Energy Managers
- Architects and Building Designers

CONTINUING EDUCATION INFORMATION FOR 2024

- 32 PDHs are approved by the NC Board of Examiners for Professional Engineers and Land Surveyors (NCBELS)
- 40 LU|HSW are approved by the American Institute of Architects (AIA), course code ASPV2024
- 24.0 CEs are approved by the North Carolina Board of Examiners for Electrical Contractors (NCBEEC)
- This course is approved by the North American Board of Certified Energy Practitioners (NABCEP) for initial exam application JTA credits and recertification credits. For more information about approved credits, visit the <u>course listing</u>.

COURSE OUTLINE

	Review system design: Grid-Direct
Day 1	3-line wiring diagram review
	 Deratings – PV Watts review, energy production calculations
	Review string sizing
	 Basics of electrical services and interconnection choices
	Lab IV curve and environmental effects vs derates; IV curve tracer; Shading
	live system; Calculate performance / inverter efficiency, Pathfinder
	Review and Introduction to Code
Day 2	Review lab in-class
	Review inverter choices for grid-direct small, mid-size and larger systems, and
	discuss maximizers
	 NEC 690: In-depth look at the 2017 NEC codebook - 690.16(B) Fuse servicing
	\circ 690.4(E) & (F) Circuit routing
	\circ 690.7(A) Informational note on ASHRAE data
	 690.8(B) (1) and (2) Overcurrent devices and conductor ampacity
	o 690.11 Arc-fault protection
	 690.13 Exception 2 - Disconnecting means - all conductors
	 690.16(A) and (B) Disconnecting and servicing fuses
	 690.31(B) PV wire conduit fill calculations 200.31(E) DC aircuits inside a building
	 690.31(E) DC circuits inside a building Conductors, Disconnects, and Boxes
Day 3	NEC discussion continued:
	-
	 What to expect in NEC 2020 Transformer-less inverters & ungrounded arrays
	 Conductor Sizing
	 Required disconnects, combiner specifications, mechanical drawings
	 In depth supply and load side connections
	Grounding, Article 250, 690 Section V
	 Sizing EGC, GEC, and grounding electrode system design
	Code required labeling
Day 4	Connections, Grounding, Labeling, and Commercial Site Analysis
	 Site analysis (rooftop or ground) Flat roof racking options/concerns
	 Ground mount racking options
	 Picking a tilt angle – inter-row shading
	 Safety procedures / Installation best practices / Lock out tag out
	Commissioning
	LAB on ground fault troubleshooting
Day 5	Site Analysis
	 Ground fault blind spot, what, why and methods for mitigation o Residual
	current monitoring
	 Commercial systems - Design and draw a 3 line wire diagram for a complex system
	 Monitoring options inverter, third party, wireless, etc
	 Common install errors/code violations
	Tour FREEDM Systems Center on NC State Centennial Campus